eeMark Manual

Daniel Molka
June 20, 2012

Energy-Efficient Cluster Computing

SPONSORED BY THE

Federal Ministry
of Education
and Research

Contents

1 Introduction 3
2 eeMark Overview 3
2.1 Kernels to stress individual system components 4
2.2 Kernel Sequences and Their Parallel Execution 4

3 Source Code Generation 5
3.1 Configuration o 6
3.1.1 Kernel Definitions 6

3.2 Avwailable Kernels 7
3.2.1 Compute Kernels 7

3.2.2 Data Types and Convert Functions 8

3.2.3 Communication Kernels 8

324 I/OKernels 9

3.3 Workload Profiles 9
3.3.1 Syntax 9

3.3.2 Restrictions Lo 10

4 Energy Measurement 10
5 Using eeMark 11
5.1 Preparation o 11
5.2 Running the Benchmark 12

6 Benchmark Result 13
6.1 Individual benchmark results 13
6.1.1 Example: oo 14

6.2 Reference benchset result 14
6.2.1 Example: 16

7 Acknowledgement 16

1 Introduction

The energy consumption of compute clusters has become a major concern
over the last years. Therefore, methods to efficiently operate HPC centers
continue to become more important as the focus is shifting from raw per-
formance towards performance per Watt. The peak power consumption per
node is no longer increasing while the idle power continuously decreases due
to the adaption of power saving mechanisms. However, the proper use of
hardware efficiency features under partial load remains challenging. Idle or
low-power states of the processor can reduce performance due to wake-up
latencies of the devices, invalidated caches, etc. On the other hand, features
such as Turbo Boost of newer generation Intel processors are widely used,
even if the performance gain is overshadowed by the non-proportional power
consumption increase. This results in a high power consumption of proces-
sors during phases of high utilization, that are unfortunately also generated
by busy-waiting based synchronization mechanisms. The challenge is to
identify the appropriate energy saving mechanism for a specified workload
to reduce the power consumption with little or now performance decrease.

Therefore, energy efficiency benchmark eeMark was developed in order
to analyse the energy efficiency of clusters and investigate the effectiveness
of power saving mechanisms. A configurable source code generator is used
to create various computationally intensive kernels that can be tailored to
different processor architectures. These compute kernels are combined with
MPI communication and I/O operations to create parallel workloads that
stress all components of an HPC installation. Different phases are typically
bottlenecked by few components, allowing to conserve energy in other, not
fully utilized components. Multiple power measurement tools are supported
to determine the energy efficiency under those well-defined workloads.

Section 2 describes the high-level benchmark design. Section 3 shows
how the source code is generated for a certain platform. The usage of the
benchmark is explained in Section 5. Section 6 illustrates the results gener-
ated by the benchmark.

2 eeMark Overview

The benchmark is designed to determine the performance and efficiency of
HPC systems. In order to support multiple instruction set architectures,
the benchmark is implemented in the high level programming language C.
Furthermore, HPC systems typically are distributed memory systems with
multiple compute nodes that are connected via a network. MPI is used as
communication and synchronization library between the participating nodes
and processes, as it is architecture independent and commonly used in the
HPC community.

2.1 Kernels to stress individual system components

Processors, memory, network, and file system are the major contributors
to the total energy consumption. Therefore, three classes of benchmarking
kernels are available to stress the different components:

e compute kernels that generate high load on CPUs and/or memory,
e communication kernels that stress the network between the nodes,
e 1/0 kernels that use the file system.

Figure 1 shows the dataflow through the kernels. A detailed description of
the kernels can be found in Section 3.2.

Figure 1: Dataflow of individual kernels. Compute kernels use input and
data to calculate the output. Communication and I/O kernels only use input
and output buffers as source and destination, respectively

2.2 Kernel Sequences and Their Parallel Execution

Applications usually have multiple phases during their execution. To re-
flect that in the benchmark, each MPI rank performs a sequence of kernels
that stress different components. Two buffers are allocated per rank that
alternatingly act as input and output buffers for the kernels as depicted
in Figure 2.

Figure 2: Kernel sequence dataflow. The output of each kernel in the se-
quence becomes the input of the kernel that follows. The data buffer is only
allocated with the size required by the respective kernel.

The kernel sequences are defined for groups of ranks that perform the
same workload (see Section 3.3). The size of the groups can be calculated
dynamically at runtime in order to enable running the benchmark with dif-
ferent numbers of processes However, groups with a fixed size are supported

as well to allow e.g. a single master that collects all data from a variable
number of workers. Three algorithms as depicted in Figure 3 are available
to assign ranks to groups. Communication can be done between ranks of
a single group or between ranks of different groups. The available patterns
are listed in Section 3.2.

>

(a) (b) (c)

Figure 3: Group assignments of 10 ranks to two groups of variable size
with a 1:2 ratio. Groups: A (3 ranks), B (6 ranks), and idle (1 rank). (a)
continuous blocks, (b) round robin, (¢) weighted round robin

3 Source Code Generation

The eeMark source code is generated from templates. Generating the source
code requires python, the python-cheetah package, and the program date
to be installed. By default the python script only generates the source code.
However, it can be used to build and run the benchmark as well.

Usage:

./eeMark.py [options]

options:

-al--action {source|build|run}: select operation
source: only generate source code (default)
build: generate code and compile
run: execute benchmark (requires -b)

-c|--config: configuration file (default: config.cfg)

-b|--benchspec: benchspec to run

-h|--help: print help

3.1 Configuration

A configuration file is used to select the compiler, tailor the benchmark code
to the architecture, and select the kernels that are included in the binary.
It includes the following options:

e compiler settings:

cc C compiler to use (e.g. gce, mpice)
ccflags compiler flags (e.g. -mavx, -std=c99)
ldflags linker flags (e.g. -lmpi)

o MPI settings:

mpicmd command to run MPI applications (e.g. mpirun)
np_param parameter to specify number of processes (e.g. -np)
np_default default value for number of processes

e Source code optimization options:

simd_width register width in Byte, all buffers will be aligned ac-

cordingly
unroll level of loop unrolling
blocksize blocksize used by some compute kernels to maximize

reuse of level 1 cache content.
e Miscellaneous settings:

prefix optional prefix for binary name to distinguisch multi-
ple versions that are optimized for different systems

energylib selected power management library (see Section 4)

Furthermore, additional pragmas can be specified in the section [pragmal
in the form "PRAGMA_<NAME>="#pragma <value>". This adds the respec-
tive pragma before loops if #include "pre_loop_pragma.tmpl" is used in
the template. Multiple pragmas can be defined. Each prgama can be dis-
abled by removing ~-DPRAGMA_<NAME> from the Makefile before compiling the
benchmark.

3.1.1 Kernel Definitions

The available kernels are configured in individual sections. Changes to the
kernel definitions are only needed if kernels are added or removed. This is
typically not required.

A kernel is defined in a section [func_<name>] that can include the
following parameters:

must not contain submission command of batch system, see section 5.2

type type of kernel: compute | convert | comm | io | mpi_io

compute computation kernel
complex computation kernel

convert data conversion kernel
comm communication kernel
io POSIX I/O kernel

mpi_io MPI I/O kernel

tmpl name of the function template for this kernel
(default: func_<name>.tmpl)

init name of the data initialization template for this kernel
(default: init_<name>.tmpl)

datatypes available data types int32, int64, single, double
(default: all)

ops_per_byte list of available versions with different amount of operations
per byte, only needed for compute kernels

3.2 Available Kernels

Only kernels that are listed in the configuration file are included in then
source code. Kernels that support the ops_per_byte parameter will be gen-
erated in multiple versions - one for every listed amount of operations per
byte. Compue kernels with type compute share one initialization function
for all versions, kernels of type complex have seperate initialization func-
tions for each version of the kernel. The workload profiles (see section Sec-
tion 3.3) must not include any undefined kernel or unsupported amount of
ops_per_byte.

3.2.1 Compute Kernels

The simple kernels (type=compute) perform vector operations using differ-
ent arithmetic operations (addition, multiplication, multiply-add, division,
square root, etc). They can perform a variable amount of operations per byte
in order to generate compute bound or memory bound workloads. Many
compilers support automatic loop vectorization to utilize SIMD extensions
such as SSE or AVX, that increase performance of such data parallel opera-
tions. However, only simple loops are covered by a wide range of compilers.
To enable vectorization on many systems, the following restrictions are met
by the simple compute kernels:

e simple loop form: for (i=0;i<size;i++), not
for (i=0,j=n;i<size;i++,j++)

e no manual unrolling of loop iterations as auto-vectorization merges
multiple loop iterations into one (operations on consecutive data ele-
ments within one iteration are not vectorized by some compilers).

e access arrays solely with the loop index, i.e. always use ptr[i] (no
ptrli+n] or j=i+n;...ptr[jl)

However, modern superscalar processors with pipelining and out-of-order
execution typically require a certain amount of independent operations to
fully utilize their execution units. A coarse-grained loop unrolling (enabled
with the unroll parameter in the configuration file) can provide these in-
dependent operations without breaking the loop form restrictions. In this
case data is divided into multiple blocks with separate pointers. Each loop
iteration processes one element of every block, thereby creating indepen-
dent operations while retaining the possibility for the compiler to combine
consecutive iterations into one iteration using SIMD instructions.

A matrix multiplication kernel is available as well (type=complex). Un-
fortunately, the nested loops and the required more complex data address-
ing violate above restrictions what can result in low utilization of the SIMD
units.

3.2.2 Data Types and Convert Functions

Most kernels are available in 32 and 64 bit integer as well as single and
double precision floating point versions. However, the output af a kernel
can not be processed by a following kernel that needs a different input data
type. Therefore, convert kernels are available that change the data type and
enable sequences that use different data types.

3.2.3 Communication Kernels

The communication kernels allow to exchange data between ranks within a
group and between ranks in different groups. Available kernels (see Figure 4)
are:

(a) global broadcast, reduce, and allreduce that involves all ranks in all
groups,

(b) global broadcast, reduce, and allreduce that involve only the first rank
of every group,

(c¢) broadcast, reduce, and allreduce within a group,

(d) send and receive between groups that exchange data between ranks
with the same group rank

(e) rotate up and down within a group.

Care has to be taken that all groups participate in global operations (a, b),
and that inter-group communication (d) consists of deadlock-free matching
pairs of sends and receives, as otherwise the execution would be blocked.

Collective communication Point-to-point communication

I Y

[
I

s

Figure 4: Available MPI communication patterns. (a) all ranks, (b) first
rank of every group, (c¢) within group, (d) between equal group ranks, (e)
rotate within group

3.2.4 1I/0 Kernels

The I/O kernels use POSIX or MPI I/O functions to read and write files.
When using POSIX I/O Each rank has individual input and output files.
The MPI I/O kernels use one file per group. The input files for the ranks
that perform read operations are created and initialized with random data
in the initialization phase before the actual benchmark.

3.3 Workload Profiles

The workload is specified in benchspec files (<name>.benchspec). They
determine how much computation is performed and how much data is used
by a benchmark run.

3.3.1 Syntax
In section [general] global settings are defined.

datasize amount of input and output data

computesize amount of data processed by compute kernels, has to be
equal to or a multiple of dtasize, processing continues at

the beginning of the buffer when the end of the buffer is
reached

granularity = amount of data processed by a single call of a kernel, the
whole sequence is performed for each block before starting
to process the next block, allows to share results for parts
of the data with other groups

The kernel sequences for each group (see Section 2) are defined in individual
[GroupN] sections. Each section includes the following parameters:

size fixed|dynamic: determines if the group has a fixed amount
of ranks or uses as many ranks as available

num_ranks for groups with fixed size this is the exact number of ranks,
for dynamic groups ranks are assigned to the group in mul-
tiples of the number, the ratio between different groups
with dynamic size is kept during the assignment of ranks
(e.g. if one group has size 2 and another size 3 up to 4
ranks can be idle as only multiples of 5 can be assigned to
the two groups in order to keep the 2:3 ratio)

function sequence of kernels performed by the group in each iter-
ation, sequences are defined as comma separated lists of
functions in the form: <function name>_datatype|_ops_per
_byte] (e.g. random_gen_int64, to_double_int64, mul_double
128, io_write_double)

3.3.2 Restrictions

The following restrictions have to be met by each sequence:
e output data type of each function equals the input data type of the
following function

o first kernel does not need input, i.e. generate random numbers, read
from file system, or receiving MPI function

e last kernel is check_output of matching data type that checks for illegal
values (not a number, infinite, or zero)

4 Energy Measurement

Power is measured using external tools. The following methods are sup-
ported by eeMark:

PowerTracer is developed at the University of Hamburg. It can be used
to store the measured power consumption and corresponding
timestamps in a database for post-processing which is used

10

by eeMark to collect power consumption information after
the benchmark is finished.

Dataheap (http://tu-dresden.de/zih /dataheap) is a distributed moni-
toring and data collection infrastructure developed at Tech-
nische Universitat Dresden. It consists of a central manager
service which is connected to data sources and data collec-
tors via network. Power meters can be connected as data
sources. eeMark can be connected as collector in order to
access the recorded power consumption values.

PTDaemon (ptd), the SPEC power and temperature daemon has been
developed by the SPEC open system group. It supports
many power analyzers from several vendors and provides a
simple interface to access this information.

All methods use the same basic approach. The power consumption is mon-
itored during the execution and the average power during the measurement
interval can be queried using an API after the execution. The required
timestamps are collected by rank 0 for each iteration. One of the power
measurement tools needs to be available in order to run eeMark. Wrapper
libraries that implement the actual power measurement using one of those
tools are included in eeMark (subdirectory 1ib). Support for other power
measurement equipment can be added by providing a library that imple-
ments the API defined in the src/energymeter_interface.h. The library
to use is selected in the configuration file, energylib=

powertracer Use PowerTracer: The libglib2.0-dev package is requiered to
use PowerTracer. The INCLUDE and LIB path of PowerTracer
have to be configured in 1ib/powertracer_compile.sh be-
fore building eeMark. The used nodes are specified in envi-
ronment variable: PTLIB_NODES.

dataheap Use Dataheap: Copy libexpec/ folder from your Dataheap
installation to eeMark/lib/ directory. Set DHLIB_.SERVER
to the dataheap server (host:port) and DHLIB_.COUNTER
to the conter of the power meter connected to the system
under test.

specpower Use PTDaemon from SPEC: Set SPLIB_.SERVER to the
server (host:port) running ptd.

dummylib Run eeMark without power measurement.

5 Using eeMark

5.1 Preparation

The following steps are needed to get the benchmark operational:

11

1) setup one of the power measurement tools (see Section 4)

2) edit power measurement, compiler, and MPI settings in configuration
file (default: config.cfg)

) optionally edit optimization parameters as well

) generate source code (see Section 3)

5) compile the benchmark on the system under test using make [-j n]
) make sure that the command line tool bc is installed, furthermore wc,

cut, sed, echo, expr will be requiered by shell scripts.

Steps 2,3, and 4 can be performed on another computer if the requiered
software is not available on the system under test. A script (run.sh) that
can be used to start the benchmark is created in step 4 as well. However,
manual adaption can be necessary for using batch systems.

5.2 Running the Benchmark

Benchmarks can be run individually or in predefined sets:

e ./run.sh [options] <benchspec> runs a single workload profile.

e ./runset.sh [options] <benchset> starts a set of benchspecs.
Options for run.sh:

-i|- -iterations number of iterations
-d|- -distribution distribution of ranks (see Figure 3)

-h|- -hugetlbfs use hugepages mounted at specified directory for input,
output, and data buffers.

- -version print version information
--help print help
<benchspec> benchmark specification file

The runset.sh script uses the list of benchspecs from the benchset file
to sequentially start individual benchmarks using run.sh. The correspond-
ing parameters for - -iterations and - -distribution are taken from the
benchset file as well. Additional options (e.g. -hugetlbfs) will be passed to
all calls of run.sh.

The runset.sh directly uses the output of the individual benchmark
runs. Thus, if a batch system is used the execution of runset.sh has to be
submitted as a single job, i.e. the mpicmd setting in the config file must not
include the submission command of the batch system.

A collection of benchspecs and reference benchsets can be found in the
<eeMark-inst-dir>/benchspec directory. However, custom benchspecs
and benchsets can be created easily.

12

6 Benchmark Result

The benchmark determines performance and efficiency ratings as well as
a combined score. Detailed reports are generated for individual workload
profiles (benchspecs). This is especially useful to compare different power
management configurations on a single system under the same workload.
However, comparing different systems requires to take multiple scenareos
into account. Each system can have its strength and weaknesses in different
components (e.g. capacity vs. capability systems). Thus, a workload can
for example be limited by the network on one system while being compute
bound on another. This easily leads to wrong conclusions when attempting
to compare the efficiency of different systems based on a single workload.
Therefore, reference benchsets are provided that cover a wide range of
workloads with various utilization levels of the different components in order
to facilitate comparisons between system for different classes of applications.

6.1 Individual benchmark results

The performance and efficiency rating are based on the amount of operations
performed by the benchmark. As this is not known at compile time the
information is collected from all ranks at runtime. Therefore, all kernels
report the number of performed operations in ten categories:

iops_32 32 Bit integer operations

iops_64 64 Bit integer operations
flops_sp single precision floating point ops
flops_dp double precision floating point ops
mem read bytes read from memory
mem_write bytes written to memory

io_read bytes read from file system
io_write bytes written to file system

network _send bytes send over network

network _recv bytes received over network

In order to derive a measure for the whole workload operations are weighted
according to their effort. The workload heaviness is the sum of all weighted
operations of all ranks.

The performance rating is measured in bilion weighted operations per
second. The efficiency rating is measured in weighted operations per watt.
Additionally, a combined score is calculated, which is the square root of
the product of the two ratings. The report generated for each benchmark
run includes a summary of the performed operation, runtimes and energy

13

of every iteration, the average runtime and energy of all iterations, and the
three ratings for every iteration as well as the total ratings derived from the
average runtimes and energy.

6.1.1 Example:

Benchspec: combinedl_dp.benchspec
Operations per iteration:

- 32 Bit integer operations: 0.00B (weighted 0.00B)
- 64 Bit integer operations: 0.00B (weighted 0.00B)
- single precision operations: 0.00B (weighted 0.00B)
- double precision operations: 185542.59B (weighted 742170.35B)
- Bytes read from memory/cache: 74217.03B (weighted 445302.21B)
- Bytes written to memory/cache: 37417.76B (weighted 224506.53B)
- Bytes read from file system: 309.24B (weighted 59373.63B)
- Bytes written to file system: 309.24B (weighted 59373.63B)
- Bytes send to other ranks: 7421.70B (weighted 178120.88B)

- Bytes received form other ranks: 7421.70B (weighted 178120.88B)
Workload heaviness: 1886968.112 billion weighted operations
Benchmark started: Sat Apr 28 02:39:37 2012
Iteration 1:
start: 02:40:02.786157
end: 03:07:53.584621
runtime: 1670.798 s
energy: 4381.198 kJ
avg. power: 2622.218 W
Results:
- performance score: 1129.38
- efficiency score: 0.43
- combined score: 22.05
Benchmark finished: Sat Apr 28 03:07:53 2012
average runtime: 1670.798 s
average energy: 4381.198 kJ
average power: 2622.218 W
Results:
- performance score: 1129.38
- efficiency score: 0.43
- combined score: 22.05

6.2 Reference benchset result

Running a benchset creates a summary with the individual benchmark
results and total scores. The reference.benchset evaluates the efficiency
for different classes of applications:

e compute benchmarks: These benchmarks perform no or little I/O op-
perations and do not communicate between ranks. The three work-
loads have different ratios of arithmetic operations and memory ac-
cesses. The computel benchspec performs many arithmetic opera-
tions with every opperand, thus it depends on high utilization of the

14

ALUs or FPUs to achieve high performance. The compute2 bench-
spec performs only few calculations on every operand, thus it benefits
from high memory bandwidth. The compute3 benchspec uses a mix of
computationally intensive and memory-bound kernels. Each workload
is performed for different data types.

e communication benchmarks: These benchmarks perform no or little
I/O operations. Data is exchanged frequently between ranks which
perform only few calculations on the data. The comm1 benchspec uses
two equally sized groups of ranks that bidirectionally exchange data
with MPI_send() and MPI recv(). The comm2 benchspec has a sin-
gle master rank that distributes and collects data using MPI_bcast()
and MPI_reduce(), respectively. The comm3 benchspec is a producer-
consumer scenario with 3 consumers for every producer. The measure-
ments are repeated for different distributions of ranks where it makes
sense.

e 1/O benchmarks: Those benchmarks perform mainly I/O operations
on large files. The iol benchspec reads files, performs a single arith-
metic operation on every element, and writes the result into another
file. The i02 benchspec only reads from files and tests every element
for abnormal values (nan or infinite). The i03 benchspec writes ran-
dom data to files. Each I/O benchspec is available in an MPI I/O
(reference.benchset) and an POSIX I/O (reference_nompiio.benchset)
variant. The MPI I/O variants use large files that are shared between
all ranks in a group, whereas the POSIX I/0 versions use smaller files
for every rank.

e combined workloads: The combined workloads use a mix of opera-
tions from the above three categories. The combined1 benchspec uses
MPI_send() and MPI_recv() to exchange data between ranks, whereas
the combined2 benchspec uses collective MPI operations. Each work-
load is performed for different data types. The measurements are
repeated for different distributions of ranks where it makes sense.

The final benchmark scores are the average of all executed benchspecs in
the benchset. However, the total result is influenced by each and every
component in the system. Thus, in order to compare different systems the
individual results need to be taken into account to identify characteristic
strength and weaknesses. For comparisons between systems of different
size it has to be considered that the performance score scales well with
system size as eeMark uses an weak scaling approach. However, as power
consumption scales with system size as well, the efficiency score does not
scale with the size of a systems. Furthermore, communication and I/O
kernels will not scale linearly because of contention in the network and I/O
system. Thus, the efficiency is likely to decrease if system size is increased.

15

6.2.1 Example:

The following results were measured on four compute nodes, each with four
16-core AMD Opteron 6274 processors (i.e. 256 processes):

Benchmark	Distribution	Iterations	Performance	Efficiency	Combined
			Score	Score	Score
computel_dp	compact	3	2214.67	0.97	46.34
compute2_dp	compact	3	2264.79	0.74	40.95
compute3_dp	fine	3	2384.87	0.94	47.28
computel_sp	compact	3	1125.11	0.50	23.76
compute2_sp	compact	3	2253.71	0.73	40.60
compute3_sp	fine	3	1334.56	0.56	27.24
computel_int	compact	3	611.06	0.30	13.46
compute2_int	compact	3	2203.31	0.71	39.48
compute3_int	fine	3	834.24	0.38	17.74
comml	fine	3	5429.13	1.70	96.13
commi	compact	3	561.47	0.22	11.20
comm2	compact	3	878.34	0.33	16.96
comm3	fine	3	715.09	0.28	14.18
comm3	compact	3	177.12	0.07	3.58
comm3	roundrobin	3	438.70	0.18	8.81
iol_nompiio	compact	3	403.48	0.27	10.49
io2_nompiio	compact	3	298.44	0.20	7.77
io3_nompiio	compact	3	362.32	0.25	9.49
combinedi_dp	fine	3	3996.43	1.33	72.89
combinedi_dp	compact	3	1108.31	0.43	21.73
combined2_dp	compact	3	429.24	0.17	8.63
combinedl_sp	fine	3 5158.59	1.65	92.24	
combinedi_sp	compact	3	1108.52	0.42	21.70
combined2_sp	compact	3	343.20	0.14	6.92
combinedi_int	fine	3	1293.15	0.47	24.70
combinedi_int	compact	3	864.61	0.33	16.95
combined2_int	compact	3	241.75	0.10	4.92
Result:	1445.71	0.53	27.63		

The scores in the communication benchmarks comml and comm3 depend
heavily on the distribution of the processes on the nodes as this influences the
ratio between network traffic and intra-node communication. Another inter-
esting observation is the difference between computel_dp and computel_sp.
This is caused by a limitation of the used compiler that does not vectorize
large loops automatically (e.g. addition with 128 operations per element in
inner loop is vectorized, but inner loop with 256 operations is not). Thus,
scalar instructions are often used in this case instead of packed SIMD in-
structions, what requires twice as many instructions for single precision.

7 Acknowledgement

The development of eeMark has been funded by the german federal ministry
of eductaion and research (BMBF) in the project eeClust (grant number:
01THO8008C).

16

	Introduction
	eeMark Overview
	Kernels to stress individual system components
	Kernel Sequences and Their Parallel Execution

	Source Code Generation
	Configuration
	Kernel Definitions

	Available Kernels
	Compute Kernels
	Data Types and Convert Functions
	Communication Kernels
	I/O Kernels

	Workload Profiles
	Syntax
	Restrictions

	Energy Measurement
	Using eeMark
	Preparation
	Running the Benchmark

	Benchmark Result
	Individual benchmark results
	Example:

	Reference benchset result
	Example:

	Acknowledgement

